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Abstract--We study, theoretically, the surface-tension-driven breakup of a long filament of fluid in a 
general linear flow, v = L.x. By analyzing the problem in a moving frame and assuming a circular cross 
section we find that the flow around the filament is an axisymmetric extensional flow with a time- 
dependent strength, which can be calculated from the rate of rotation of the filament and a contribution 
to the axial velocity which varies with the azimuthal angle. The analysis of the axisymmetric time- 
dependent case does not appear to be overly restrictive: the asymmetric variation may be small even in 
the case of a simple shear flow, in which the asymmetry is the greatest among all possible linear flows, 
depending on the initial orientation of the filament. We present calculations for two special cases: 
hyperbolic extensional flow and simple shear flow. The results indicate that under similar conditions, the 
drop fragments produced on breakup in simple shear flow are larger than those in hyperbolic extensional 
flow. The predictions of the theory also compare reasonably well with some previous experimental data 
in hyperbolic extensional flow and simple shear flow. 

I N T R O D U C T I O N  

The instability of filaments of fluid with regard to surface disturbances has been the subject of a 
number of experimental and theoretical studies. Such analyses are of relevance to the study of the 
mixing and dispersion of immiscible liquids in which drops may be stretched into filaments prior 
to breakup. 

It has been demonstrated by several experimental studies in two-dimensional flows (Taylor 1934; 
Karam & Bellinger 1968; Grace 1971; Torza et al. 1972; Bentley 1985) that the strain rate of the 
flow around the drop must exceed a critical strain rate to break it into smaller fragments. In the 
case of creeping flow around the drop the critical strain rate is dependent mainly on the ratio of 
the viscosity of the drop to that of the suspending fluid and the type of flow (simple shear, 
hyperbolic extensional flow etc.). Theoretical analyses have been reasonably successful in predicting 
the critical strain rate for linear flows [see the review paper by Rallison (1984)], the usual criterion 
for breakup being the non-existence of stable drop shapes beyond the critical strain rate. Here our 
aim is to gain an understanding of the breakup process itself by considering the surface-tension- 
driven breakup of a filament of fluid acted upon by a linear flow. 

The breakup of an extending cylindrical thread of fluid as a model for an elongated drop was 
first analyzed theoretically by Tomotika (1936), who worked on the problem based on a suggestion 
of Taylor. The flow far from the drop was taken to be an axisymmetric extensional flow and 
the drop was assumed to be infinitely long. The analysis yielded a complex non-linear ordinary 
differential equation describing the growth of axisymmetric sinusoidal disturbances on the surface 
of the drop. An asymptotic analysis for long times showed that although the disturbances were 
damped by the flow initially, at later times they were sufficiently magnified to cause breakup. 
Several years later, and using the same assumptions, Mikami et al. (1975) presented an improved 
version of the analysis of Tomotika (1936) and carried out a thorough numerical analysis of the 
system to obtain the drop size and initial amplitude of the disturbance as a function of the time 
for breakup for a fixed strain rate and viscosity ratio. They also obtained asymptotic estimates for 
a number of quantities, and carried out experiments to study the breakup of drops in a 
two-dimensional extensional flow. Comparison of the theory with the experiments was justified by 
showing that the cross section of the drop would become circular for sufficiently slender drops. 
The experimental values for the dimensionless wavenumber at breakup, taken for two viscosity 
ratios and a number of different strain rates, agreed reasonably well with the theoretical predictions 
for an average strain rate, the results being relatively insensitive to changes in strain rate. The 
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dynamics of drop breakup were also investigated experimentally by Grace (1971). The time for 
breakup, the length of the drop at breakup and the number of drops produced on breakup were 
recorded for a drop in a simple shear flow for a fixed viscosity ratio and a number of values of 
strain rate exceeding the critical strain rate. The number of fragments produced on breakup 
increased dramatically with increasing strain rate and the dimensionless time for breakup 
decreased. The main effect of the external strain rate was to damp out disturbances on the surface 
of the drop, thus postponing the breakup until the drop was more elongated. Experiments with 
a programmed strain rate, in which the drop was extended to its critical deformation and then the 
strain rate reduced to keep the deformation constant, showed that breakup occurred sooner in this 
case. 

It is clear from the analyses described above that the external flow has a significant impact on 
the dynamics of the breakup of drops. In practice the flow encountered by a drop in a mixer is 
complex and the analysis of breakup seems to be intractable due to the complications introduced 
by non-symmetric drop shapes, the unknown velocity field around the drop etc. Here we restrict 
ourselves to the simpler case of an infinitely long cylindrical drop in the linear flow 

v ~ = L . x  

with the assumption that the drop cross section remains circular due to its slenderness. Such a 
problem, especially with L as a function of time, is relevant to the local description of mixing of 
immiscible fluids (Khakhar et al. 1984). 

In general, in such a flow, there is a tendency of the drop cross section to become non-circular. 
When the drop is sufficiently elongated, however, surface tension acts to restore the cross section 
to a circular shape [see Mikami et al. (1975)]. Here we assume that the drop is sufficiently slender 
so that the cross section is nearly circular. We realize the latter condition by omitting terms in the 
imposed flow which tend to make the cross section non-circular, in a manner similar to that used 
by Hinch & Acrivos (1980) in their analysis of a slender, pointed drop in a simple shear flow. 

A FLUID FILAMENT IN A LINEAR FLOW 

We consider the stretching and rotation of an infinitely long fluid filament of viscosity /~ 
suspended in a fluid of viscosity/A, with the viscosity ratio, p, defined as p = #i//~,. The flow far 
from the drop is 

and the Reynolds number with respect to the filament radius is vanishingly small. The velocity field 
with respect to a moving frame with the second-order harmonic terms omitted is then 

where 

and 

v~ = Giz  + (gt2 cos ~b +gt3 sin ~b)r, 

v7 = - G l r  /2 + (g:t cos ~b +g31 sin q~)z, 

v~ = (g31 cos 4~ - g21 sin ~b)z + (g32 -g23)r /2 ,  

D 

go = Q, .Q, .  + (1 - ao)Q,.L Q  

G,=D:e ie ,  (no sum on i). 

The vector e, is a unit vector in the coordinate direction i and D is the stretching tensor with respect 
to the moving frame. Q is an orthogonal matrix specifying the rotation of the frame and is to be 
found from the analysis. A vector is represented in the two frames by 

x-- Q . i ,  

where the overbar refers to quantities with respect to the fixed frame. 
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Assuming creeping flow around the drop, the equations for the flow are 

p,~V2a~, = V P . " I  

V'nm=O.J ~" m =i ,  e, 

where the subscripts i and e refer to the internal and external flow, respectively. The boundary 
conditions to be satisfied by the flow are 

ue = v ~°, r~oo ,  

u e = ~, r ---- a, 

T~.z=T',z, r = a ,  

and 

0 
T ' . -  I ~  = - ,  r = a, 

tl 

for all z, where a is the radius of  the filament, o is the surface tension and T m is the stress tensor. 
In the above equations v ® refers to the simplified velocity field in which the second-order harmonics 
of ~b are neglected. A velocity field which satisfies the equations is 

u ~ = G , z + r  1-~ r 2 ( 1  (g]2cos~b+glasin~),  

Gir 

u, ,  = 2 '  

u ~ = 0  

outside the filament, and 

2 
U~ .= G I z  + ( i - - - ~  (g¿2 cos  ~ -t- g|3 sin O)r ,  

Gjr 

u ~ =  2 ' 

UcDi = 0 

inside the filament, provided that the filament rotates according to the following two conditions: 

g23 m g32 
and 

g2J = g31 = 0. 

The condition g23 -- g32 specifies a solid-body rotation about the drop axis which does not contribute 
to the breakup in any way. The conditions g2~ --g3, --0 specify the rotation in the two normal 
directions, e2 and e3. Substituting ~ = Qr.el in the expressions for g21 and g3J and simplifying we 
find 

m 

~h -- E m  - (D:  ram)a,  

where ~ is a unit vector oriented along the drop axis with respect to the fixed frame. From the 
normal stress boundary condition we obtain 

o 
(P, + ~ G , )  - (Pc + gcG,)  = - ,  

a 

where P~ and Pc are the constant pressures inside and outside the filament, respectively. 
The above analysis indicates that the velocity field with respect to a frame rotating with the drop 

is essentially an axisymmetric extensional flow with a non-axisymmetric shear flow along its surface. 
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In addition it indicates that the drop rotates and stretches as a material element in the flow. The 
above results are confirmed by an analysis of the stretching of pointed drops when the length of 
the drop tends to infinity (Hinch & Acrivos 1980; Khakhar & Ottino 1986). In the case of drops 
of a finite length in flows which are not purely extensional, however, there is a tendency of the 
drop axis to bend (Hinch & Acrivos 1980) which we neglect in our analysis. The approximation 
improves as the imposed flow becomes more extensional in character and as the drop length 
increases. 

GROWTH OF SURFACE DISTURBANCES ON THE 
FLUID THREAD 

When the deformation of the filament due to the surface instability is small, the velocity field 
is only slightly perturbed from the undisturbed flow found earlier and can be separated as 

t V,,--U,,,+EV~, m =i ,  e, 

where ~v* is the flow generated by the instability. The asterisk denotes quantities pertaining to the 
distrubance flow, the small parameter e is related to the amplitude of the disturbance and the 
superscript t pertains to the total or resulting flow. The disturbance flow must also satisfy the 
creeping flow equations separately. 

The drop shape is given by 

R = a + Ef(z,d?), 

where Ef(z,c#) is the small varicosity of the drop surface caused by the disturbance flow. In the 
case of an axisymmetric extensional flow, Tomotika (1936) showed that small amplitude axisym- 
metric disturbances are sinusoidal with 

f ( z )  --- = cos(kz), 

where ,t is the amplitude and k the wavenumber. In the case of a general linear flow, however, 
disturbances which are initially axisymmetric will be convected by the flow along the drop surface, 
resulting in a non-symmetric drop (figure l b). Here we consider the case when the asymmetry is 
small and the varicosity is given by 

f (z ,¢ )  = ~t cos(kz + El karl), [1] 

where rl = rl($) specifies the non-axisymmetric phase shift of the disturbance caused by the surface 
flow and E~ is a small parameter specifying the deviation from symmetry which we assume to be 
of the same order of magnitude as E. Physically, the case of small asymmetry considered above 
corresponds to the situation when the distance that a disturbance is convected during its growth 
is small in comparison to its wavelength. 

c0) I~ z 

x2 

r '/' 

x 3 

(b) 

Figure 1. (a) Fluid ftlament with rotating frame fixed on its axis. (b) An initially axisymmetric disturbance 
convected by non-axisymmetric shear velocity on the drop surface. 
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We formally write a perturbation solution for the disturbance flow for this case as 

V*,. = v ~ ( r ,  z, t, {(dp )) + t,v*=(r, z, dp ) + O(t~), 

v*  = v,~,(r, z, E, {(~)) + ei v*,.(r, z, dp ) + O(E~), 

v~,. = ElvJi=(r, z, ~ ) + O(t~), 

P* = P*m(r, z, £1{ (dP )) + q e~m(r, z, dp ) + O{E~), 

which reduces to the axisymmetric case in the limit q ~ 0 .  El{(~b) is a function which takes into 
account the asymmetry of the disturbance velocity field in the first-order terms. An analysis similar 
to that presented by Miakami et al. (1975) [for details the reader is referred to Khakhar (1986)] 
gives the result, to O(E), 

+ ea cos(kz + q k a ~ ) -  E= sin(kz + q ka~)(l~z + q kay) 

°[ 1 - 2 a + ~  cos(kz + qka f l )  +~v*, 

[ : ] + Giz + ~ (gl: cos 4~ + gl3 sin 4~) Eek sin(kz + q kay), 

where the overdot represents d/dt and the stretching rate GI = E : ~  is a function of time and 
depends on the flow far away from the drop. The above condition is satisfied if the following 
relations hold: 

for the drop radius; 

for the wavenumber; 

for the amplitude; and 

Gla 
= - - -  [ 2 ]  

2 

/~ = - GI k [3] 

GI ~ ~- k[Ai 11 (ka) + A:aI'l (ka)] [4] ~ = - - - - ~ -  

2 
E,/~ = (1 +p------) (gI2c°s~b +&3sin~b) [5] 

for the phase shift. Equations [3] and [4] describe the rate of change of the wavenumber (k) and 
amplitude of disturbances (o~) growing on a fluid thread of mean radius a, stretching according to 
[2]. Equations [2]--[4] are similar in form to those of Mikami et al. (1975), thus to the order of 
approximation, our analysis shows that the asymmetry has a negligible effect on the rate of growth 
of small disturbances. The rate of stretching, however, varies with time as a result of the rotation 
of the filament and alters the dynamics of the breakup process. The rate of convection of 
disturbances is given by [5] which can be integrated independently, given the imposed flow, to give 
the total phase shift at any time. In what follows, we assume the phase shift to be small for all 
cases and subsequently calculate it as a check. 

Defining a dimensionless wavenumber as 

and a characteristic time as S-~ with 

we find 

x =ka  

S = (D:D) I;2, 

= --3ex 
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and 

di = --½ ea, 

where e is the stretching eflieiency defined as 

G~ O:~t~ 

S 

(Chella & Ottino 1985), On integration we find 

and 

(O:D) I/2 

[6] 

: X ~  113 

= aot-;o ) , t71 

where x0 and a0 are the initial wavenumber and radius, respectively. Substituting into the equation 
for amplitude, [4], we finally obtain 

d In ~ e x 1/3 (1 - x 2) 3 
d---S - =  2 ) 2 E  x'/-------Y-~(x)-~ e(p-l)-~(x)' [8] 

where E = Sl~ao/a is the dimensionless strain rate and ~(x)  and ~(x) are known functions of the 
wavenumber and the viscosity ratio [see Mikami et al. (1975)]. 

BREAKUP OF LIQUID THREADS IN FLOWS WITH 
A NON-INCREASING STRAIN RATE 

Here we discuss the growth of disturbances leading to the breakup of the filament for flows with 
a non-increasing strain rate, assuming that the equations for growth of disturbances derived for 
small amplitude and asymmetry remain valid even when both are of order 1. The behavior is 
qualitatively similar to the case of a filament in an axisymmetric extensional flow treated by Mikami 
et al. (1975), and we follow their arguments to derive criteria for breakup for the class of flows 
described above. 

The equation for amplitude, [8], can be formally integrated to give 

l n ~ =  rxorxl/3(1-x2-------~)~(x) ( P - 1 ) ~ ( x )  dx + ~ l n ~ ,  [9] 
• o Jx L 3E x4/3e x 

using [6] and [7]. From the above equation we can calculate the amplitude ~ for a wavenumber 
x corresponding to the initial values x0 and ~0. The typical behavior of the relative amplitude vs 
the wavenumher for the class of flows being considered is shown in figure 2a for a constant value 
of the dimensionless strain rate, E, and viscosity ratio, p. For sufficiently large initial wavenumbers, 
the relative amplitude decreases, then increases and finally decreases again. Disturbances with small 
initial wavenumhers are monotonically damped out. Concurrently the radius of the filament 
decreases with time. 

Considering disturbances with a sufficiently large initial wavenumber, the wavenumber (Xm) 
corresponding to the minimum in figure 2a can easily be found by putting 

 -(ln )-O0x ,lO,, 
with the condition 

dX 2 ~, ~oJ > 0. [10b] 

On differentiating [9] we obtain 

x~/~ (I -x~) (P - l)~(Xm) !=O [11] 
3E x~3 e dp(xm) Xm --3Xm " 
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Figure 2. (a) Relative amplitude of the disturbance (~,/ae) vs the dimensionless wavenumber (x) for a 
filament in a hyperbolic extensional flow for a fixed value of the dimensionless strain rate (E) and viscosity 
ratio (p) for different initial wavenumbers (x0). (b) Magnification of disturbances (a/a=) vs time for a 
filament in a hyperbolic extensional flow for fixed value of the dimensionless grain rate (E) and viscosity 
ratio (p) and different initial wavenumbers (xo). The dashed line is the dimensionless mean radius (a/a~) 
vs time for the same conditions. The first intersection of the plots of the magnification with the dashed 
line is the point of breakup of the filament. Note definitions for time for breakup (tb) and time for growth 

(t 8) of the disturbances. 

Condition [10b] must  be checked by numerical differentiation to show that the extremum is a 
minimum. 

Following Mikami et al. (1975), we define the magnification of  disturbances as 

M = l n  ~-- for 0( > =m 
0( m 

0 for ~ < OCm, 

where am is the amplitude of  disturbances which are continuously generated at all wavelengths due 
to thermal and other fluctuations. The amplitude ~ is thus taken to be the initial amplitude of  
all disturbances and corresponds to the minimum amplitude to which a disturbance can be damped 
out. Based on the above definition, the magnification of  disturbances is given by 

_= f~=rx~,3 (1 _ x  2) ~b(x) (p - l ) ~ ( x ) l  dx + ~ l n  x 
M .Ix L3E X4/3"''"~ X -~m [12] 

for Xm > x and 0 otherwise. 
Mikami et  al. (1975) showed that in the case of  an axisymmetric extensional flow, for any given 

time there exists a disturbance with a wavenumber Xopt which has the maximum magnification. The 
arguments can easily be extended for the class of  flows 
wavenumber,  xopt, can be found by putting 

a M  
- - = 0  
~x0 

with the condition 

being studied here. The opt imum 

d2M 
- - < 0 .  
~x0: 

Differentiating [12] with respect to xo, keeping time constant, we find 

where 

Oxo = (Xm)-- --  dx=O, 

x~/3 (1 -- x 2) ~b(x) - (p - 1) ~ (x) .  
f ( x )  = 3E  x4/3e x 

[13a] 

[13b] 
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Using [1 l] the above equation reduces to 

fx  4/3 _ _  [(X0)o,; (x0):0, ~0 (1 - x 2) ~ ( x )  L - - ~  e + d x  + [~ - Xop, f (xo~,)]  = O. [14] 
op, x4 /3e  3E axokeJJ 

Again the condition for the extremum to be a maximum, [13b], must be checked by numerical 
differentiation. 

Finally, defining the point of breakup as the point when the amplitude of the disturbance is equal 
to the mean radius of the drop, we obtain 

and, on substituting for magnification, we obtain 

( , 0 )  (, ,,,, 
In ~ = b L ~ -  x4-~ae x 

The above analysis of the dynamics of the growth of disturbances leading to the breakup of the 
thread may be visualized in physical terms as m figure 2b, in which we plot both the radius of the 
filament and the magnification (M) of the disturbances with different initial wavenumbers (x0) vs 
time. The mean radius of the filament (a) decreases with time due to the stretching of the filament. 
The wavenumber also decreases with time and depending on the initial wavenumber, the 
disturbances may grow or be damped out with time. If a disturbance is initially damped out, there 
is a time lag before the magnification increases from zero. At any given time there is a disturbance 
with a particular initial wavenumber which is magnified to the greatest extent. If the magnification 
of the disturbance at that time is equal to the mean radius of the thread, the thread is said to break. 

We can now obtain the conditions at breakup, defined by Xb (=  Xopt), X0b (=  (X0)op,) and xm from 
[11], [14] and [15], given E, p, ao/~tm and e = e(t, i0),  which depends on the imposed flow. The time 
for breakup, tb (see figure 2b), can then be found from 

f0 e(t) dt = In ; 

and the time for growth of disturbances, t~ (see figure 2b), from 

= I n  . 

J0 

Neglecting satellite drops, the radius of drop fragments produced on breakup can be estimated 
from the wavelength of the disturbance that causes breakup: 

Rd / y/3 
a0 k2xoJ  

as shown by Mikami et al. (1975). 
It is clear from the above equations that in addition to the fluid properties (a,/A,/6 ), strain rate 

(S) and type of flow, we require the initial conditions (ao, ffao) and the minimum amplitude of the 
disturbances (0tin) to make predictions using the above analysis. An estimate for 0~ may be 
obtained, assuming that the disturbances are due only to thermal fluctuations (Kuhn 1953), from 

( 21kT "~,/2 [16] 

where k is Boltzmann's constant and T is absolute temperature. The initial radius and orientation, 
however, cannot be as easily determined since in a real situation they are not independent variables. 
The initial conditions for this analysis correspond to the point when a stretched filament of fluid 
just becomes unstable with regard to surface disturbances. In general, the initial point would 
depend on the flow around the drop as well as the drop shape. From a theoretical viewpoint, a 
much more detailed analysis that takes into account the three-dimensional drop shape is required 
to predict the point of instability. Experimentally, Mikami et al. (1975) have suggested the following 
criterion to determine the initial point of the analysis: 
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" . . .  not too long after application of the extensional flow, so that waves would not 
already have been amplified, and also not too soon after application of flow, so that 
one would have a uniform liquid thread." 

The initial conditions cannot be predicted from an analysis as above, and thus results of the analysis 
are given in terms of the initial conditions. 

In the following sections we present calculations for a filament in a hyperbolic extensional flow 
and a simple shear flow, which are the only flows for which data on the dynamics of the breakup 
process are available at the moment of this writing. 

BREAKUP OF A FLUID THREAD IN A H Y P E R B O L I C  
EXTENSIONAL FLOW 

In this case, in general, an arbitrarily oriented drop is quickly oriented along the direction of 
maximum stretching by the flow so that the initial orientation is unimportant, and the efficiency 
rapidly achieves its asymptotic value (Chella & Ottino 1985) given by 

1 

Since g,j = O, the shear velocity along the surface disappears and 

/~ =/~ =0, 

and the equations describing the growth of the disturbances reduce to those obtained by Mikami 
et al. (1975) for a filament in an axisymmetric extensional flow. Thus 

X 
--  = exp(-3 et), 
x0 

and on substituting into [11], [14] and [15] we obtain 

xl/3 3(p - l)~(Xm)+ 1 ~.1/3 [17] Ob = 

eE ( l  - -  X2m) ( # ( X m )  " ' m ,  

x~/3eE L T  O ( x b ) ~ ( 1  - x ~ )  . _13 JXb fx=(1 ~/~2) O(x) d x ]  - 3 ( p -  l) ~(Xb) -- 1 = 0  [181 

and 

= rxol-x ' (l_-x 2 , ( , - 1 ,  ] 
In J~b [_3eE x 4/3 c~(x)-  x -~(x) d x - ~ l n x m .  [19] 

Solution of the above set of non-linear equations could prove to be quite difficult and we propose 
the following indirect procedure which greatly simplifies the computation. We choose p, (x~3/Ee), 
Xm, Xb and (ao/g=x~/3) as variables and carry out the following steps for a given p: 

(i) choose x= in an appropriate range; 
(ii) calculate (x~3/Ee) from [17]; 
(iii) calculate Xb from [18] using x= and the calculated value of (x~/3/Ee); 
(iv) calculate (a0/ohx~o 3) from [19] using Xm, Xb and (x~3/Ee). 

In the above procedure, all the steps are explicit calculations except (iii) which requires an iterative 
calculation. From the results, since x= is already specified, given either (a0/0h) or E we can easily 
calculate the remaining quantities. Thus for each set of calculations for a given viscosity ratio and 
range of Xm, we can obtain graphs keeping either E or ao/oh fixed. Mikami et al. (1975) presented 
their results as graphs keeping E fixed. For purposes of comparison with the ease of a simple shear 
flow which we study next, we repeat some of the calculations carried out by Mikami et al. (1975); 
however, since we expect ao/oh to be large and in a relatively small range, we present the results 
for different fixed values of ao/oh. We also compare the theoretical predictions of the time for 
breakup (tb) with the data of Mikami et al. (1975), which was not done previously by the authors. 
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Figure 3. Dimensionless time for breakup (tb) vs the 
dimensionless strain rate (E) for a filament in a 
hyperbolic extensional flow for fixed values of the 
viscosity ratio (p) and dimensionless initial radius 
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Figure 3 shows the time for breakup as a function of the dimensionless strain rate (E) for 
different values of a0 /~  and the viscosity ratio. The time for breakup increases slowly with strain 
rate for fixed ao/~m, and from the graph we find 

tb ~:Vl log(E); 

the slope of the graph, v,, being almost independent of the viscosity ratio and in the range 5.56-5.91 
for the values of ao/~m considered. 

Figure 4 shows the radius of the drop fragments (Rd/a0) formed on breakup as a function of 
the dimensionless strain rate (E) for the same conditions as above. There is a rapid decrease in 
the size of the drop fragments with increasing strain rate, and the graph indicates that 

R__~ oc E v2 
a0 

for fixed ao/~m. Again the slope is almost independent of the viscosity ratio and takes on values 
in the range -0 .83  to -0 .89  for the range of ao/~ m considered. The number of drop fragments 
may be estimated from 

,0 No(: --,  
a0 

where I0 is the initial length of the drop. Thus 

N ~ E-3"2 

for fixed ao/~m and initial aspect ratio (ao/lo). 
Finally, we compare the predictions of the theory for the time for breakup with the data of 

Mikami et al. (1975) taken for drops in a hyperbolic extensional flow generated in a four-roll 
apparatus. Figure 5 shows the plot of the time for breakup vs the dimensionless strain rate for two 
viscosity ratios differing by an order of magnitude. The symbols represent the experimental data, 
while the lines are the predictions of the theory for the corresponding viscosity ratios and fixed 
values of ao/Um chosen to span the experimentally obtained values of a0 with a~m calculated from 
[16]. Unfortunately, the two sets of data do not cover a wide range of E. Figure 6 shows another 
way of comparing the data with the theoretical predictions. Here we plot t b VS a0/~f, m for the tWO 

viscosity ratios. Again the symbols represent the experimental data, with ~-m calculated using [16]. 
The lines are predictions of the theory for the corresponding viscosity ratios and fixed values of 
E spanning the range of experimentally obtained values of E. Considering that there are no 
adjustable parameters in the model, and the approximation involved, the agreement between the 
theory and experiment seems to be quite good. We next consider the breakup of a filament in a 
simple shear flow. 
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Figure 5. Dimensionless time for breakup (&) vs the 
dimcusionless strain rate (£) for a filament in a 
hyperbolic extensional flow for fixed values of the 
viscosity ratio (p) and dimensionless initial radius 
(ao/0~). Symbols represent the data of Mikami et  ~. 
(1975); lines are the predictions of the theory for the 
corresponding viscosity ratios (p) and fixed values of 
ao/=. spanning the experimentally obtained values of 

ao with ~ calculated from [16] (figure 6). 
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Figure 6. Dimensionless time for breakup (tb) VS the 
dimensionless initial radius (a0/==) for a filament in 
a hyperbolic extensional flow for fixed values of the 
viscosity ratio (p) and dimensionless strain rate (E). 
Symbols represent the data of Mikami e t  ai. (1975) 
with 0~ calculated from [16]; lines are the predictions 
of the theory for the corresponding viscosity ratios 
(p) and fixed values of E spanning the experimentally 

obtained values (figure 5). 

B R E A K U P  O F  A F L U I D  T H R E A D  I N  A S I M P L E  
S H E A R  F L O W  

According to our model, the stretching rate of the drop in a simple shear flow with shear rate 
is given by 

(cot 00 + ~t) 
Gl = 

1 + (cot 00 + ~t) 2' 

where Oo is the initial angle between the streamlines and the axis of the thread. When the drop is 
almost aligned with the streamlines, as is expected in the case of a highly stretched drop, the 
stretching rate in dimensionless form is approximately given by 

c 
e =  

1 + c t '  

where c = 2 tan 00, and S = :/2. Integrating the equation for the wavenumber we obtain 

so  tha t  

x 
- -  = (1 + ct) -3/: 
x0 

The expression [5] describing the phase shift of the disturbance due to the non-axisymmetric shear 
flow reduces in this case to 

/~ = 2~ (cot:0c- l)cosO, 
1 +p (cot2 0c + I) 

where we have put El -- I. Again, since the drop is almost aligned with the streamlines, the above 
expression may be approximated by 

: = - 2x /2  cos ~, 
l + p  

and  on  in tegrat ion  we  o b t a i n  

c o s  /~=-l+p 

e = c(z  2:' 
\Xo/ 
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Figure 7. Normalized dimensionless time for 
breakup (Ctb) VS the normalized dimensionless strain 
rate (cE) for a filament in a simple shear flow for 
fixed values of the viscosity ratio (p) and dimen- 

sionless initial radius (ao/a~). 

Figure 8. Dimensionless radius of spherical drop 
fragments formed on breakup (Rd/a0) vs the nor- 
malized dimensionless strain rate (cE) for a filament 
in a simple shear flow for fixed values of the viscosity 
ratio (p) and dimensionless initial radius (a0t~,,). 

where t~ is the time for growth of  the disturbance (figure 2b). Thus the ratio of  the maximum 
distance the disturbance is convected to the wavelength at the point of breakup is given by 

flm~,ab = X/~ tsXb 
2b n (1 + p ) "  

The assumption of  our analysis is validated if the above expression is small. 
Substituting for the efficiency, e, into [11], [14] and [15] we obtain 

Xob 3(p -- l)~(Xm) + 1 
cE (1 -- X~)~(Xm) Xm, 

and 

__ f ~ m ( l - x 2 )  ] Xob F(1 -- X~) ~(X,) -- X: ~b(x)dx - 3(p - l )~(x , )  - 1 = 0 
cE L Xb ~ ,  

/ ao \ tx"IXob (1--X ~) ( P - 1 ) ~ ( x ) l d x - ½ 1 n X m .  In /= - - -5~ /=  / ~ (x) 
\%Xo~;] J~b 3cE x ~ x 

The procedure we follow to solve the above set of  equations is identical to that for the extensional 
flow earlier, except in this case the variables are p, xob/CE, Xb, Xm and (ao/amX~3). Also, in this case 
there is an additional unknown initial condition, the initial orientation of the filament which 
appears as a normalizing factor with the dimensionless time and strain rate. We present the results 
in terms of the initial conditions so that the time appears as ct and the strain rate as cE. As before, 
the calculations are for fixed a 0 / ~  and viscosity ratio. 

Figure 7 shows the dimensionless time for breakup as a function of the dimensionless strain rate, 
both normalized by c, for the same conditions as figure 3 for the extensional flow. From the graph 
we find 

(1 + Ctb)~(cE) ~3 

for fixed ao/~m, indicating a faster rate of increase for the time for breakup with increasing strain 
rate as compared to that for the extensional flow. The slope of the graph is almost independent 
of  the viscosity ratio and ao/O~m with v 3 -- 0.65. 

Figure 8 shows the radius of the drop fragments on breakup (Rd/ao) vs the normalized 
dimensionless strain rate (cE) for fixed a0/am and viscosity ratio, and should be compared to figure 
4. The size of drop fragments decreases with increasing strain rate, and may be represented as 

Rda0oc(cEy' 
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Figure 9. Normalized dimensionless maximum phase shift of the disturbance (C~w, ab/Ab) VS the 
normalized dimensionless strain rate (cE) for a filament in a simple shear flow for fixed values of 

the viscosity ratio (p) and dimensionless initial radius (ao/a=). 

and the number of drops by 

N oc (cE)- 3,,. 

Again the slope of the graph is almost independent of the value of ao /~  and the viscosity ratio 
and v4 = -0.32. The results indicate that the rate of increase in the number of fragments with strain 
rate (E) is slower than that obtained for the thread in the extensional flow. The drop fragments 
formed on breakup are also larger than those in hyperbolic extensional flow, for a given E and 
ao, regardless of the value of c. Since c < 1 and the radius of the drop fragments increases with 
decreasing c for a fixed value of E, a lower bound for the radius of the drop fragments may be 
obtained by assuming c = 1, leading to the above conclusion. 

Finally, in figure 9 we plot the phase shift of the disturbance vs the strain rate for the same 
conditions as above. Since the time for growth (ts) can only be obtained in combination with the 
initial orientation, we plot C~m~,ab/~b VS cE. The graph indicates that C~=,~ab/~b is almost 
independent of the strain rate and takes on low values. However, since c is also small, the phase 
shift takes on larger values, and to check the validity of the assumption of small asymmetry we 
need to know the initial orientation. Thus, if c is not too small the assumption may be justified. 

We also compare the theory with some experimental data of Grace (1971) in which the time for 
breakup, length at breakup and the number of drop fragments formed were recorded for drops 
in simple shear flow for strain rates above the critical strain rate. The comparison in this case is 
difficult since the experimentally measured quantities are different from the variables that appear 
in the analysis. The data are presented in terms of the following dimensionless quantities: 
(t*a/21zed) is the dimensionless time for breakup, the time measured from the start of the 
experiment at which the drop is spherical, and d is the radius of the initially spherical drop; (lb/2d) 
is the dimensionless length at breakup; and (E*/E*) is the ratio of the initial dimensionless strain 
rate to the dimensionless strain rate at breakup, where 

E* = ~#cd (19p + 16) 
a (16p + 16)" 

No information is available about the initial conditions required for the theoretical analysis so that 
direct comparison to the data is impossible. Our approach here is to circumvent the requirement 
for the unknown quantities by combining variables so that the unknown quantities cancel out. 

The initial point of the theoretical model is a filament of radius ao that is just unstable to 
disturbances. If the time required to deform an initially spherical drop into a filament of radius 
a0 is neglected then 

t *  ~ ¢t  b a o 

2dire cE 2d" 
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Figure 10 (a, b). r/vs ~ (see the text for definitions) for a filament in a simple shear flow for fixed viscosity 
ratios (p). Symbols repre~nt the data of Grace (1971); fines are the predictions of theory for the 
corresponding viscosity ratios and fixed values of the dimensionless initial radius (a0/am) = 3 x 104 and 

(ao/0t~) -- 1 x 10 s. The lines for the two values of (ao/0q~) overlap. 

Approximating the drop to be a circular cylinder of  radius a b and length/b, at the point of  breakup 
we obtain 

2"-d = 3 ~ = 3 \x~]  

using [6]. On appropriately combining the above two expressions we define a new variable ~, 

~: = \ 2 - ~ J  = 6 \ c E /  kXb/ 

so that the unknown quantities (ao/d) and c cancel out. Neglecting satellite drops, the number of  
drop fragments may be estimated as 

We define a second variable ~/, 

- -  

s o  that again the unknown quantity, ao/d, cancels out. The above simplifications allow comparison 
with the experimental data, however, the initial radius (a0/~tm) is still required in the calculations, 
and we simply choose a reasonable range of  values. 

Figure 10a shows a graph of  ~ vs ~/. The symbols represent the data of  Grace (1971), while the 
lines are the theoretical predictions for the corresponding viscosity ratios and fixed values of  a0/0tin. 
The lines for the two values of  a0/0t m overlap in this case so that range of  values chosen does not 
seem to play a significant role. Though the behavior is qualitatively similar, the r/values are much 
higher than the theoretical predictions. This may be attributed to the fact that satellite drops are 
included in the count in the number of  drop fragments in the experimental data. The size 
distributions of  the drop fragments formed on breakup for a set of  experiments for drops of  
viscosity ratio p = 3.99 x 10 -3 for increasing values of  (E*/E*) recorded by Grace (1971) indicate 
that the largest drop fragments comprise about  5% of  the total number of  fragments. If  this fact 
is taken into account, there is better agreement between theory and experiment (figure 10b). 

C O N C L U S I O N S  

In the above analysis we have studied the breakup of  a filament of  fluid acted upon by a general 
shear flow by means of  a simplified model, the main component  of  which is the dynamic interaction 
between the growth of  disturbances and the stretching of  the filament as a function of the system 
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parameters. In the development of the model we have neglected the effect of a non-circular cross 
section and the drop ends, as well as any bending of the drop axis. The error due to all the above 
approximations, however, decreases with increasing slenderness of the drop. We have also 
neglected the asymmetry of disturbances due to the non-axisymmetric velocity along the drop 
surface. The asymmetry is the largest for the case of a simple shear flow, and our calculations for 
this case indicate that the assumption may be justified if the normalizing factor, c, which depends 
on the initial orientation, is not too small. 

The predictions of the model seem to agree reasonably well with data for the dynamics of 
breakup, which at present are available only for the cases of a hyperbolic extensional flow and a 
simple shear flow. In the former case, we reinforce the findings of Mikami et al. (1975) by showing 
that the model is capable of predicting the time for breakup in addition to the wavelength at 
breakup, as shown by Mikami et al. (1975). For a filament in a simple shear flow, the data is too 
sparse to make a firm judgement on the model, however, there seems to be qualitative agreement 
in this case as well. In both cases, the model predicts the effect of the viscosity ratio on the dynamics 
quite well. 

In addition, the model is simple enough to do detailed calculations of the breakup dynamics over 
wide parameter ranges and different types of flows including time-dependent flows, as might be 
encountered by a drop in a mixer. The main disadvantage is that initial conditions (ao, ffno) are 
required, and such data are generally difficult to obtain. However, solving the exact problem, even 
numerically, is extremely difficult if not impossible (Rallison & Acrivos 1978). 
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